
 
 

Faster Secure Cloud Computations with a Trusted Proxy 
 
 

Nir Drucker1, 2, Shay Gueron1, 3, and Benny Pinkas4 
 

1 University of Haifa, Israel 
2 Intel Corporation, Israel Development Center, Haifa, Israel 

3 Amazon Web Services, Seattle, WA, USA 
4 Bar Ilan University, Ramat Gan, Israel 

 
Cloud computing infrastructures offer many advantages to users, 

including large storage and high computation power. However, 

offloading workloads to hosting environments raises trust and privacy 

concerns. Algorithms that address these concerns require multiple 

network transactions and have low performance. 

What if the user could run a trustworthy application on the hosting 

infrastructure, which would act as a "Trusted Proxy" on his behalf? 

Networking overheads would decrease, but new overheads for making 

an application trustworthy would emerge. Therefore, the efficiency of 

Trusted Proxy solutions depends on the balance between these 

performance costs. We present an experiment to show that the local 

computations (on the server) that an application needs to execute in order 

to be trustworthy, cost orders of magnitude less than executing “native” 

computations remotely (on the client) while relying on data transfer over 

the network. Trustworthy applications that could serve as trusted proxies, 

have therefore a great potential. 

 
© 2017 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 

of any copyrighted component of this work in other works. http://doi.org/10.1109/MSP.2017.4251121  

Secure cloud transactions  

 

The Trusted Proxy paradigm via simplified examples 
 

We discuss a simple scenario. Consider a user who uses storage-and-

compute services on a server environment. The server is expected to 

execute some algorithm on the user's behalf. Assume, for simplicity, that 

the user's data (database) is first loaded to the server, and subsequently, 

the server responds to some SQL queries to this database. These queries 

can modify the database (e.g., INSERT/UPDATE/DELETE), or return 

some results (e.g., SELECT). Furthermore, let's assume that the user can 

establish a secure connection with the server, and can trigger an 

application that would operate on the server to execute the queries. This 

http://doi.org/10.1109/MSP.2017.4251121


application can be viewed as a “proxy” application.  

In the simplest scenario, the user trusts the server. Thus, he can query 

the database and trust the server to execute it correctly, and return the 

correct output (when an output is expected). Such a scenario occurs, for 

example, when the user is a member of an organization that owns and 

controls the server. 

The scenario becomes more complicated if the user assumes some 

adversarial conditions, and therefore cannot trust the server. Different 

types of adversaries can be assumed. For example, another application 

that runs on the server can interfere with the execution of the user's 

application and cause it to execute differently than intended. Threats 

need not be only software-based. For example, a malicious employee at 

the server facility might interfere with the execution, by, e.g., hooking a 

DMA device and applying read/overwrite commands to the memory. 

The consequences (to the user) of not knowing what (if anything) is 

executed on the remote environment are serious. Under such mistrust 

assumptions, the user would need to download the data and perform the 

operations by himself, or require a “Trusted Proxy'” which is guaranteed 

to run the intended application. 

 

Trusted Proxy. A proxy that is run by a user on a server, is called 

Trusted (TP, for Trusted Proxy) if, per user input, the result of its 

execution is the same as the result that would have been obtained if the 

user had executed an equivalent application on his own (trusted) 

machine. 

In other words, a TP is guaranteed to run an attested computation, 

where the user is able to trust that a specific computation is indeed run 

by the TP. A TP satisfying this definition enables the user to trust the 

server to handle non-confidential data. (Note however that the definition 

of a TP does not prevent it from leaking information to the server, and 

therefore it cannot be trusted with accessing confidential data.) 

 

Consider the following simple example. 

 
Example 1. A server holds a non-confidential database that includes 

a two-column table TAB1 [id, value], id=1,2,…,N (where N is large). 

The user's query is 

 

“SELECT value FROM TAB1 WHERE id ≤ 100”, 

 

While TAB1 is not secret, it is critical for the user to know that the 

querying application indeed returns all and only the relevant entries. 

 



The functionality that is offered by a TP is essentially verifiable 

computation on outsourced data. There are cryptographic constructions 

that provide this functionality without relying on any trusted proxy (e.g., 

[1,2,3]), but current constructions still incur a considerable overhead 

which is unrealistic for most use cases. 
 

Data privacy requires extended TP functionality 

 
In many (if not most) cases, execution trustworthiness is not enough, 

and the user also requires privacy for his data, input and output. The 

following example illustrates the cost of extending TP solutions to 

support also data privacy. 

 

Example 2. A server holds a database that includes the two-column table 

TAB2 [id, ENCK(value)]. The first column contains non-confidential 

data, and it is assumed that the second column entries in TAB2 were 

encrypted by the user prior to uploading them, using some encryption 

scheme ENC and a key K. 

Consider the query 

 

“CREATE TABLE TBL3 (SELECT SUM(value) FROM TAB2 

WHERE id ≤ 1000)” 
 
Note that the query does not request the sum, but rather requests to create 

a new table that stores this sum (for further processing by the server).  

We compare two possible approaches for a solution. 

 

1. ENC is some special encryption scheme (e.g., a Homomorphic / 

Partially Homomorphic Encryption), where the server can 

operate directly on the encrypted data.   
2. The server uses the unencrypted data in the first column in order 

to select entries of TAB2, that satisfy the query conditions, and 

sends these entries (still encrypted) to the user. The user decrypts 

these entries, sums them up, and encrypts the sum. He then sends 

the (encrypted) sum to the server that can now create TBL3 as 

required (see Fig. 1 panel a).  
 

Note that even though encryption is used, both solutions must use a 

TP to ensure the trustworthiness of the protocol's execution. Moreover, 

both solutions solve the privacy problem, but are very slow.  

In particular, the second approach pays high networking overheads, and 

also depends on operating over the limited compute power and storage 

that are available on the client.  

The query can be computed much faster using a TP that also 

guarantees data privacy, as we discuss next. 

 

Private Trusted Proxy. A TP that shares a secret key with its associated 



user, and denies the adversary from any information about this key (and 

derived secrets) is called a Private Trusted Proxy (PTP). 
 
Remark 1. We clarify a subtlety in the definition of a PTP. The fact that 

the PTP is first of all a TP, means that the user has audited and pre-

approved its intended functionality before invoking the (P)TP in the un-

trusted environment. In particular, this implies that the application was 

already properly built (or adjusted) to address the security implications 

of running in a hostile environment, per the requirements that the user 

had defined. In this case, the trustworthiness property of the TP makes it 

capable of protecting confidentiality as the user defines it, while running 

on the server, if it has a shared secret key with the user. 

This, of course, does not mean that it is necessarily easy to craft a 

PTP. In fact, an application that protects confidentiality when running on 

a local machine, would often need to be modified in order to have this 

property when it is run remotely. For example, side channel attacks 

which can be (under some assumptions) ignored on a local machine, may 

be considered a significant threat if the same application runs in an 

environment that accommodates concurrent applications. Therefore, an 

application that is planned to be run locally might need to be modified 

for use in a remote and potentially hostile environment. This can add 

overheads that affect the application's performance. 
 

Example 2 (continued). Suppose that a PTP is available, and the shared 

key is K. The user can submit the query, and expect the PTP to select the 

proper entries from TAB2, decrypt them (using K), sum, encrypt, and 

write TBL3. (See Fig. 1 panel b). This solution eliminates the need to use 

expensive special encryption schemes, or send the entire table over the 

network.  

 

It is important to note that before using a PTP, the user is responsible 

to determine what data/input/output is private, and also to make sure that 

the application’s execution flow does not leak confidential information. 

To illustrate, approving the flow in Example 2, implicitly assumes that 

the values in TAB2 are confidential, but the access pattern to the data, 

and the number of entries that satisfy the condition, can be observed by 

the server. Assigning the responsibility to the user is metaphoric. 

Typically, we expect software providers to design solutions that address 

the users’ requirements, such that users could easily accept them.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

(a) 

 

 

(b) 

 

 

Fig. 1. (a) A Trusted Proxy cannot handle private data, and therefore, 

network client-server iterations are required. (b) A Private Trusted 

Proxy can execute the query locally, on the server, without 

compromising the data privacy. 

 



Even a PTP is not always enough  
 

In some cases, it is also desirable to impose additional restrictions 

on a proxy. Otherwise, arbitrary users can use the proxy in order to run 

queries over the private data. Consider the following example. 
 

Example 3. An adversary wishes to find the number of entries in TAB1 

that satisfy value=10. To obtain this information, he can (unilaterally) 

query the PTP with 
 

“SELECT COUNT(*) FROM TAB1 WHERE value=10” 
 

Here, the PTP functionality is not sufficient to prevent the leakage 

of information. The need to restrict unilateral invocation of a PTP leads 

to the following definition. 

 

Restricted Private Trusted Proxy. A PTP that can be triggered only by 

its associated user is called a Restricted Private Trusted Proxy RPTP. 
 

Clearly, the problem that emerged in Example 3 can be solved by 

using an RPTP. In general, a PTP can be easily converted to be an RPTP 

by changing its implementation to include an integrity check, based on 

the shared key, at each invocation. 

Using a TP for security and performance on the cloud  
 

Figure 1 shows two types of secure solutions. The first solution uses 

a TP which does not provide privacy guarantees, and therefore the 

solution is based on iterations over the network. The second solution uses 

a PTP which is trusted to handle private data. The performance 

comparison of the two solutions is influenced by the network latency, by 

the overheads induced by the TP, and by the differences between the 

performance of the local and the remote platforms. 

In general, it is reasonable to assume that the server has stronger 

capabilities than the client. Moreover, the server can benefit from elastic 

on-demand usage of a large number of CPUs. However, we wish to show 

that even without this assumption, the network overheads are so 

dominant, that reducing them by means of using a PTP is advantageous. 

To demonstrate this, we discuss the following simple experiment.  
 
Experiment description. The experiment includes two parties -- a 

server and a user. To avoid an assumption on their relative capabilities, 

we use the same machine for both sides. 
 

 The server generates data of size N bytes with arbitrary contents, and 

sends it to the user in N/k packets, each of size k bytes. 

 The user processes each data packet by first computing some 



function, called latency-func(packet), and then storing the result 

locally. This function models some computational overhead per 

packet. Our software implementation assures that its latency 

depends on the packet size but not on the contents, and that compiler 

or other processor optimizations would not change it. We define 

latency in CPU-time (cycles) and not wall-clock time (seconds), to 

make it independent of the execution environment (e.g., of OS 

interrupts). 

 The experiment is executed in two modes:  

Remote mode. Here, the server and the user are different machines 

that reside in different geographies. This is the typical client-server 

scenario. The network latency is significant.  

Local mode. The server and the user run on the same local host. This 

setting represents the scenario where the user invokes a PTP on the 

server. Here, there is no networking at all. 

 

Experiment setup. The client and the server machines were both an Intel 

Xeon CPU E5-2680 v2 @ 2.80GHz. The total data size was N = 1GB, 

with a packet size of k=256 bytes, corresponding to ~4M packets. 

The function’s latency was set to take one of the values 0, ~1K 

(1,120), ~100K (112,000), ~1M (1,120,000) cycles in different 

experiment runs. Each experiment was repeated 10 times, and the results 

were averaged. For the remote mode, the server was placed in Austin 

(USA) and the user in Haifa, Israel (IL). 
 

Results. Figure 2 shows the time (in seconds) for executing the modeled 

workload for the entire data, as a function of the latency of latency-func, 

for overall data sizes of N=100 MB, 500 MB, and 1000 MB 

(corresponding to 400K, 2M, and 4M, packets, respectively). For the 

local mode (i.e., representing the use of a PTP), the main contributor to 

the run-time is the execution of latency-func. Indeed, the graph shows 

that the run-time is a linear function of the latency. On the, other hand, 

for the remote mode, the main contributor to the run-time is the 

networking. Indeed, the graphs shows run-time which is weakly affected 

by the latency. 
 
Interpretation. Our experiment illustrates the performance advantage 

that a PTP offers.  

 

 Local mode versus remote mode. Point A in the graph of Figure 2 

shows that during the time it takes to complete the computations 

over N1=500MB of data that is sent from a remote server, one can 

complete the same amount of computation over N2=1GB of data 

with a (local) PTP. Here, the latency of the latency-func is large, 

namely 1M cycles (per packet). When its latency is smaller, we can 

see a higher efficiency ratio. For example, points B and C in Figure 

2 where the processing rate of the local mode is 10x and 5x higher 



than the processing rate of the remote mode, respectively.  

 Large versus short latencies. For short latencies, the networking 

overhead dominates the computational overhead. In this case, using 

a PTP improves the performance significantly, as follows from the 

graph. For example, comparing the dashed and solid lines (with the 

same value of N) over latency=1000 cycles, we see a speedup of two 

orders of magnitude. We point out that many real-life usages would 

have low latencies. The case in Example 2, where latency-func 

performs decryption (e.g., AES at 1 cycle/byte) and addition (1 

cycle/byte). Here, the latency per a k=256 bytes packet is only 512 

cycles.  

 In cases with high latency per packet, the overhead of the 

computations can become comparable to the networking overhead. 

Therefore, the advantage of the PTP would be marginal. Point A on 

the graph shows such a scenario, where our experiment uses the 

same machine for both client and server computations. However, an 

application can be optimized to leverage the capabilities of a 

stronger server, and reduce the effect of the latency-func. This 

increases the relative impact of using a PTP. For example, compare 

the case reflected in point A of the graph, where the latency =1M 

cycles (and N=1GB), to point B where the latency=100K cycles. 

Here, optimized code that reduces the latency by only a factor of 

10x, would lead to 30x speedup in the overall run-time, if it is 

combined with using a PTP. 

 

 

 

Fig. 2. The time (in seconds) for executing the modeled workload for 

the entire data, as a function of latency-func, over a range of overall 

data size N=100,500,1000 MB. (The data packets used were of k=256 

bytes each.) The computational workload per packet is presented in 



units of 1000 cycles. The graph compares the local mode (solid lines) 

using a PTP, to the remote mode (dashed lines) where the data is sent 

from the server to the user. The highlighted intersection points A, B, 

C show the value of the data sizes N1 and N2 (N1 ≥ N2) for which the 

run-time of the local mode, processing N1 bytes, equals to the run-time 

of the remote mode, processing N2 bytes. 

Using Intel Software Guard Extensions technology to 

instantiate an RPTP  
To be trustworthy, the minimal set of properties that a TP must have 

are:  

- Isolation: the code must be isolated form all other software (at all 

privilege levels). During both build up and run time.  

- Attestation: a TP must be able to convince an external entity that its 

actual execution on the remote (hostile) environment is the same as 

the intended (and pre-approved) flow.  

Consequently, a TP can be instantiated (depending on the assumed threat 

model) on any processor that is designed to support secure cloud 

computing, using some Trusted Execution Environment (TEE) 

technology. The concept of TEE was first introduced for mobile 

platforms [4,5] and was subsequently extended to client platforms with 

technologies (e.g., AMD® Platform Security Processor [6], ARM® 

TrustZone® [7], and Intel® Software Guard Extensions (SGX) 

[8,9,10,11,12], TPM [13], Hypervisor [14]). Currently, TEE 

technologies exist even for the cloud. One example [15] combine TPM 

and VM technologies for isolation, while attestation is achieved by 

handing the user the service-provider generated keys. 

Intel has recently announced [16] that SGX will be also available for 

server platforms. Here, the assumed threats include software at any 

privilege level (BIOS, OS, Hypervisor, and user level applications), as 

well as any technology that allows an attacker to read and/or modify the 

system memory. We provide here only a brief description of SGX, 

needed for this paper (full details can be found in [8,9,10,11,12]). 

The basic primitive in SGX is the “enclave”. An enclave consists of 

code, data, and metadata that realize some functionality. Before an 

enclave is instantiated, its content is available in the clear, and can be 

audited. SGX has a procedure for secure loading of an enclave, and 

locking it in a protected memory region, ready to be run in complete 

isolation from any other software on the system. The trust boundaries of 

SGX include only the processor internals. Even the system memory is 

considered untrusted, and therefore all reads and writes to memory are 

encrypted with integrity and replay protection. SGX has special 

instructions that allow an enclave to encrypt its secrets (e.g., keys, 

passwords) into an untrusted disk, and retrieve them in subsequent 

invocations. Since the enclave is originally shipped in the clear, secrets 

need to be handed to it by some off-platform entity after it is loaded and 



instantiated on a platform.  
 

Provisioning, quoting, and attestation: building a TP 
 

The procedure that allows a secret owner to trust an enclave that runs 

on a given platform is called “remote attestation”. It is implemented by 

using two enclaves (currently provided by Intel) that have special 

capabilities and purpose : the Provisioning Enclave (PE), and the 

Quoting Enclave (QE) (Intel also provides a Launch Enclave (LE) which 

is required in order to start any enclave, including the PE and QE, but its 

functionality is not needed for our description here). 

 The PE: this enclave generates a private signing key in a special way 

that enables some external service (currently provided by an Intel 

server) to sign the corresponding public key, and return a signed 

certificate. This procedure is called “platform provisioning”. Using 

the private key, together with the certificate (on the public key), the 

platform can subsequently prove its cryptographic identity to an 

external entity. The proof is facilitated by the QE.  

 The QE: this enclave can access the private signing key that the PE 

generated, and use it to sign a “REPORT” per an authenticated 

request of another (user’s) enclave that runs on the same platform. 

The REPORT is a data structure with information that identifies the 

reporting enclave. The reporting enclave generates the authenticated 

REPORT by using a special SGX instruction, called EREPORT, and 

the authentication method is based on a symmetric key protocol. The 

signature on the REPORT can be sent via public communication (by 

the user application) to any external entity. This entity can contact a 

special server (called the Attestation Server) to confirm the signature 

on the certificate, and establish trust in the public key. With that, it 

can verify the signature on the REPORT. This chain of verification 

can convince the user in the trustworthiness of the enclave instance 

that is running on the remote platform, and accept it as a TP. 

 

A simplification of the provisioning and the remote attestation 

protocols is illustrated in Figure 3. 

 

Key exchange with SGX: upgrading the TP to an RPTP 

 

We describe a possible way for exchanging a secret key between a 

user (secret owner) and an instantiated enclave.  

The architectural definition of SGX reserves a “free'” 64 bytes field 

in the REPORT data structure. The enclave application is expected to 

supply some value of choice to populate this field as part of the input to 

the EREPORT instruction. This (non-confidential) value will be part of 

the authenticated REPORT. To use this mechanism, the enclave 

developer should provide data which is a one-way function (hash) of 



some secret data, say F(SECRET), as explained here. See Figure 3 for an 

illustration. The user first communicates with the enclave, but still 

without trusting it. Both parties run a key exchange protocol (e.g., based 

on Diffie-Hellman key exchange, or RSA encryption) and agree on a 

shared secret key “SECRET”. Then, the user challenges the enclave to 

prove its trustworthiness. In response, the enclave inputs F(SECRET) to 

the EREPORT instruction, and gets an authenticated (by the CPU) 

REPORT over the enclave's unique cryptographic identity and 

F(SECRET) (and other information). The enclave sends the REPORT to 

the QE that verifies it, and only if it is valid, signs it with its private 

singing key. Finally, the signed REPORT is sent by the enclave 

application to the user, who can acquire trust in the (signed) REPORT 

by contacting Intel Attestation Server (IAS) that can verify it.  

After the user has verified the identity of the instantiated enclave, 

this enclave is considered as a TP. Once the trustworthiness of the shared 

secret is established, this enclave is “upgraded” to the status of an 

(R)PTP. 

 

 
Fig. 3. A simplification of the remote attestation with SGX enclave. 

 

The estimated performance cost of using SGX 
 

Using SGX as a RPTP involves some overhead. To obtain a rough 

estimation of this overhead, we mention the following experiment 

reported in [17]. 

The experiment took the 445.gobmk component of SPECINT2006 

v01 [18], selected 10 input files (namely:arb.tst, arend.tst, blunder.tst, 

trevorc.tst, nicklas4.tst, nicklas2.tst, nngs.tst, buzco.tst, atari atari.tst, 

score2.tst) and compiled the test with Graphene (library OS [19]), after 

adapting it to run inside an Intel SGX enclave. The resulting code showed 



performance degradation that varied in the range 2.2% - 14%, with an 

average of 5.5%.  

In general, the performance overhead due to using SGX depends on 

the workload that the enclave executes, and the level of optimization of 

its software. Our SGX experiment indicates that the performance cost of 

using it as a PTP is orders of magnitude smaller that the networking 

overheads reported above.  

 

Conclusion  
 

We demonstrated that using a TP can not only allow secure outsourcing 

computations to a server, but can also improve the performance of trusted 

applications by orders of magnitude.  

We hope that this analysis will encourage cloud providers to 

leverage existing technologies and offer TP based solutions to their end 

users. We note that any TP is designed to protect the application against 

specific threats and adversaries on the remote platform. Thus, it is 

important that proposed solutions would be crafted carefully, and their 

security scope and limitations would be clear to the prospective users.  

The SGX technology offers a comprehensive solution that can cope 

with software attackers who can also access and manipulate the system 

memory. 

Acknowledgments  
 

This research was supported by the Blavatnik Interdisciplinary 

Cyber Research Center (ICRC) at the Tel Aviv University, the 

PQCRYPTO project, which is partially funded by the European 

Commission Horizon 2020 research Programme, grant #645622, by the 

ISRAEL SCIENCE FOUNDATION (grant No. 1018/16), by the Israel 

Ministry of Science and Technology (grant No. 3-10883) and by the BIU 

Center for Research in Applied Cryptography and Cyber Security in 

conjunction with the Israel National Cyber Bureau in the Prime Minister 

Office. 

References 
 

1. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and Virza, M. 

Snarks for c: Verifying program executions succinctly and in zero 

knowledge. In Advances in Cryptology–CRYPTO 2013. Springer, 

(2013), pp. 90-108.  

 

2. Parno, B., Howell, J., Gentry, C., and Raykova, M. Pinocchio: 

Nearly practical verifiable computation. In Security and Privacy 



(SP), 2013 IEEE Symposium on (2013), IEEE, pp. 238-252.  

 

3. Vu, V., Setty, S., Blumberg, A. J., and Walfish, M. A hybrid 

architecture for interactive verifiable computation. In Security and 

Privacy (SP), 2013 IEEE Symposium on (2013), IEEE, pp. 223-237 

 

4. -. Advanced trusted environment: OMTP TR1. 

http://www.gsma.com/newsroom/wp-

content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1

v11.pdf, (May 2009) 

 

5. -. Globalplatform. https://www.globalplatform.org/, (2016) 

 

6. VAN DOORN, L. Secure hardware and the creation of an open 

trusted ecosystem. 

https://classic.regonline.com/custImages/360000/369552/TCC\%2

0PPTs/TCC2013\_VanDoorn.pdf, (2013) 

 

7. -. A. Arm security technology - building a secure system using 

trustzone technology whitepaper. 

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-

009492c/PRD29-GENC-

009492C\_trustzone\_security\_whitepaper.pdf, (April 2009). 

 

8. Intel® Software Guard Extensions Programming Reference, 

(October 2014). https://software.intel.com/en-us/isa-

extensions/intel-sgx  

 

9. Anati, I., Gueron, S., Johnson, S., and Scarlata, V. Innovative 

technology for CPU based attestation and sealing. In Proceedings of 

the 2nd International Workshop on Hardware and Architectural 

Support for Security and Privacy (2013), vol. 13.  

 

10. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., and Del Cuvillo, 

J. Using innovative instructions to create trustworthy software 

solutions. In Proceedings of the 2Nd International Workshop on 

Hardware and Architectural Support for Security and Privacy (New 

York, NY, USA, 2013), HASP '13, ACM, pp. 11:1-11:1.  

 

11. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., and Mckeen, F. 

Intel® Software Guard Extensions: EPID provisioning and 

attestation services. White Paper (April 2016).  

 

12. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V., Shafi, 

H., Shanbhogue, V., and Savagaonkar, U. R. Innovative instructions 

and software model for isolated execution. In Proceedings of the 

http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.globalplatform.org/


2Nd International Workshop on Hardware and Architectural 

Support for Security and Privacy (New York, NY, USA, 2013), 

HASP '13, ACM, pp. 10:1-10:1.  

 

13. -. Intel® Trusted Platform Module Hardware User Guide, (August 

2013) 

 

  

14. -. Intel R 64 and IA-32 architectures software developer’s manual. 

Volume 3a: System Programming Guide (September 2015) 

 

15. DAI, W., JIN, H., ZOU, D., XU, S., ZHENG, W., AND SHI, L. Tee: 

a virtual DRTM based execution environment for secure cloud-end 

computing. In Proceedings of the 17th ACM conference on 

Computer and communications security (2010), ACM, pp. 663–665. 

 

16. -. Intel Unveils Data Center Security Strategy at 2017 RSA 

Conference. https://newsroom.intel.com/news/intel-unveils-data-

center-security-strategy-2017-rsa-conference/, (2017) 

 

17. Gueron, S. Memory encryption for general-purpose processors. 

IEEE Security &Privacy 14, 6 (2016), pp. 54-62. 

 

18. -. Specint2006.  https://www.spec.org/cpu2006/CINT2006/, (2006).  

 

19. -. Graphene library OS. http://graphene.cs.stonybrook.edu, (January 

2016).  

 

https://newsroom.intel.com/news/intel-unveils-data-center-security-strategy-2017-rsa-conference/
https://newsroom.intel.com/news/intel-unveils-data-center-security-strategy-2017-rsa-conference/
https://www.spec.org/cpu2006/CINT2006
http://graphene.cs.stonybrook.edu/

